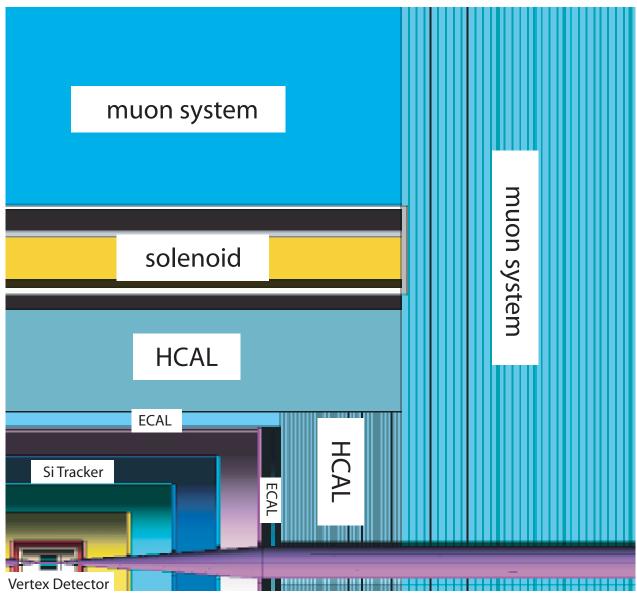
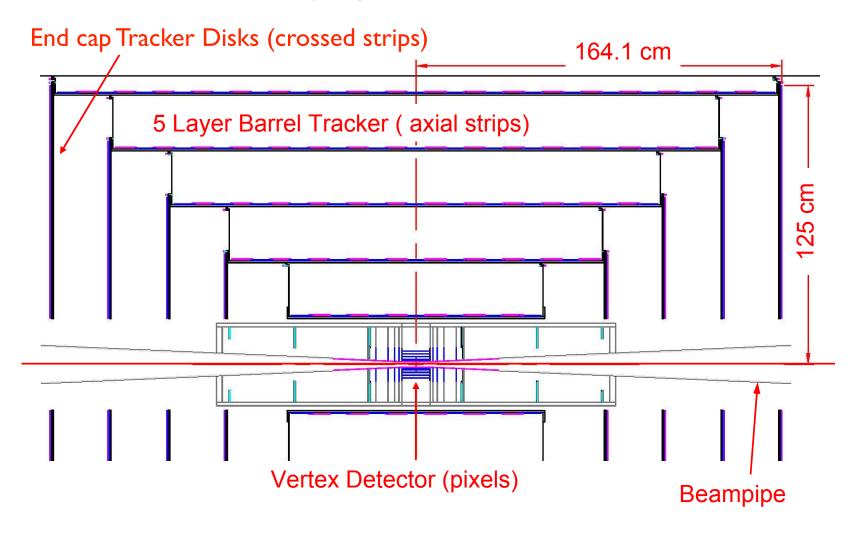
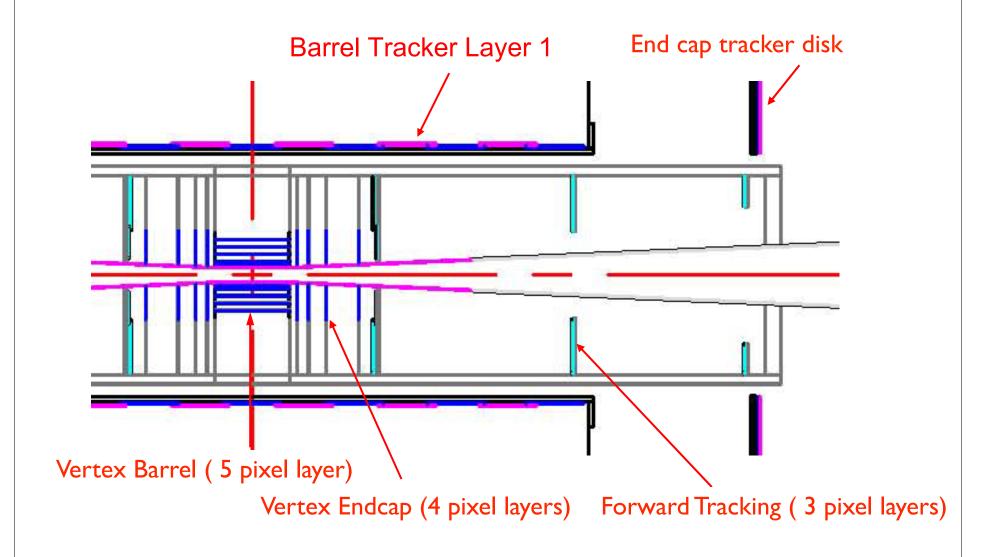
#### CD-doc-2345


# SiD Simulations and Benchmarking

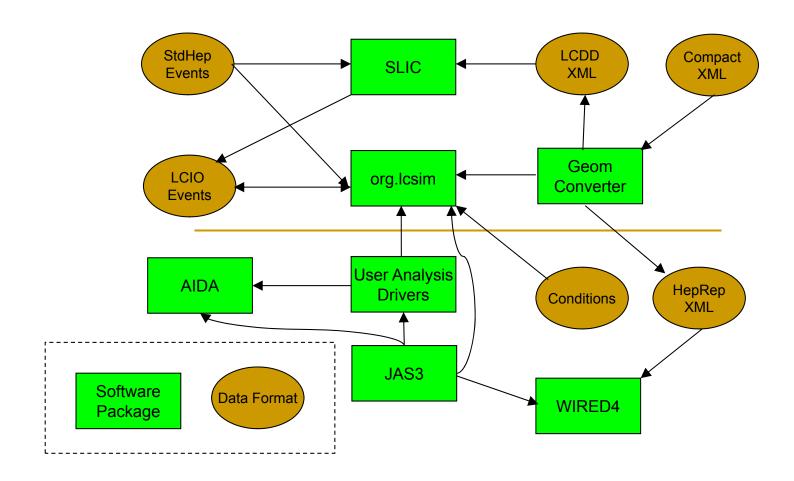
Rob Kutschke, CD/IDS
ILC Coordination Forum
July 17, 2007


## Outline of This Talk

- SiD Detector
- SiD Software
- Work plan
  - Overview of all planned work
  - Summary of Rob's work
  - Hans' talk will give more details on
    - The forward tracking work
    - Simulation of Pb Glass-scintillator dual readout calorimeter
  - Deadlines


## The SiD detector




# SiD Tracking System, Vertical Section



## Detail Near Beam Line



## SiD Software Overview



## SiD Software

- SLIC:
  - C++. G4 based simulation system.
- org.lcsim
  - Java based framework for reconstruction and analysis.
- Wired 4 based event display.
- GeomConverter:
  - Reads "Compact Detector Description" XML.
  - Native format for org.lcsim.
  - Can write:
    - HepRep XML for Wired-4
    - LCDD XML for SLIC
- Data formats: StdHep and LCIO.

## org.lcsim

- Java based.
- Not a full featured framework.
  - Good enough for a small group with documentation by lunch, coffee and beer:30.
- All key reconstruction codes live in user areas.
  - A loose collection of disconnected tools.
  - Historically user codes do not play well together.
    - Hit and Track classes are deficient so everyone makes private extentions.
- Native histogram/tuple environment:
  - aida + JAS3 as a viewer; much poorer than root.
- Weak release/distribution model.
- More details in backup pages.

## SiD Detector Models

- sid00
  - Complete but simplified sensitive volumes.
    - Barrel vertexer and tracker are pure cylinders.
    - Endcaps are annulus of disk.
  - Lots of exisiting MC needed by PFA people.
- sid01
  - As above but more detail of dead material.
  - Added forward tracker.
  - Current official model.
- New model under development.
  - Tracking elements made from wafers.
  - Will need several variations, especially in forward region, including variations of dead material.

#### Work Plan

- Forward Tracking:
  - Study occupancies using existing detector models.
  - Help to define the new detector model
    - Includes dead materials
  - Real track reconstruction in forward region.
    - Includes pattern recognition and fitting in presence of backgrounds.
- Simulated analyses.
- SiD at FNAL web site.
- Simulate the Pb Glass-scintillator cal.

Plus whatever infrastructure work is implied

#### Work Plan - Next Level of Detail

- 1. Study occupancies, using existing models.
- 2. Bookkeeping and Infrastructure improvements:
  - Help to define new detector model.
  - Details on next page.
- 3. Get Kalman filter working as a final fitter.
- 4. Enhancements to org.lcsim
  - Real pattern recognition in forward region.
  - "Port"/exercise existing code:
    - Vertexing/Jet Finding/Jet Flavor Id/
- 5. Simulated Analyses
  - $B(H \rightarrow b bbar)$  and  $B(H \rightarrow c cbar)$ .
- 6. FNAL web site.
- 7. Simulate Pb Glass-scintillator calorimeter

## Bookkeeping and Infrastructure

- Classes that need to be fixed:
  - RawTrackerHit (sort of a digi)
  - Track
- New classes needed:
  - Clusters of digis and clustering algorithms.
  - Bookkeeping of used hits.
  - Collection of muon and electron candidates.
- We are waiting on code to create RawTrackerHits from SimTrackerHits (create digis from hits).
- We can create classes but not persist them!
  - Agitate for a new persistency model.
- Effort slowed by demand that all persistent classes be usable by all detector concepts.

## Work Plan - Who is doing What

- 1. Study occupancies, using existing models.
  - Fransisco supervised by Hans.
- 2. Bookkeeping and Infrastructure improvements:
  - Help to define new detector model.
    - Geometry back end being done at SLAC.
    - Hans and students: work with Bill Cooper (PPD) for models of support and variations on the wafer layout.
  - Hit, Track and e/mu classes:
    - Rob and Hans with input from SLAC and others.
- 3. Get Kalman filter code working.
  - Rob

## Work Plan - Who is doing What

- 4. Enhancements to org.lcsim
  - Real pattern recognition in forward region.
    - Hans. This is by far the biggest job.
  - "Port"/exercise existing code:
    - Vertexing/Jet Finding/Jet Flavor Id/
    - Rob
- 5. Simulated Analyses
  - $B(H \rightarrow b bbar)$  and  $B(H \rightarrow c cbar)$ .
  - Rob. Will be done in several iterations.
- 6. FNAL web site.
  - Lynn and Rob
- 7. Simulation of Pb Glass-scintillator dual readout cal.
  - Implementation is almost complete. Hans.
  - Adam will take it from there.

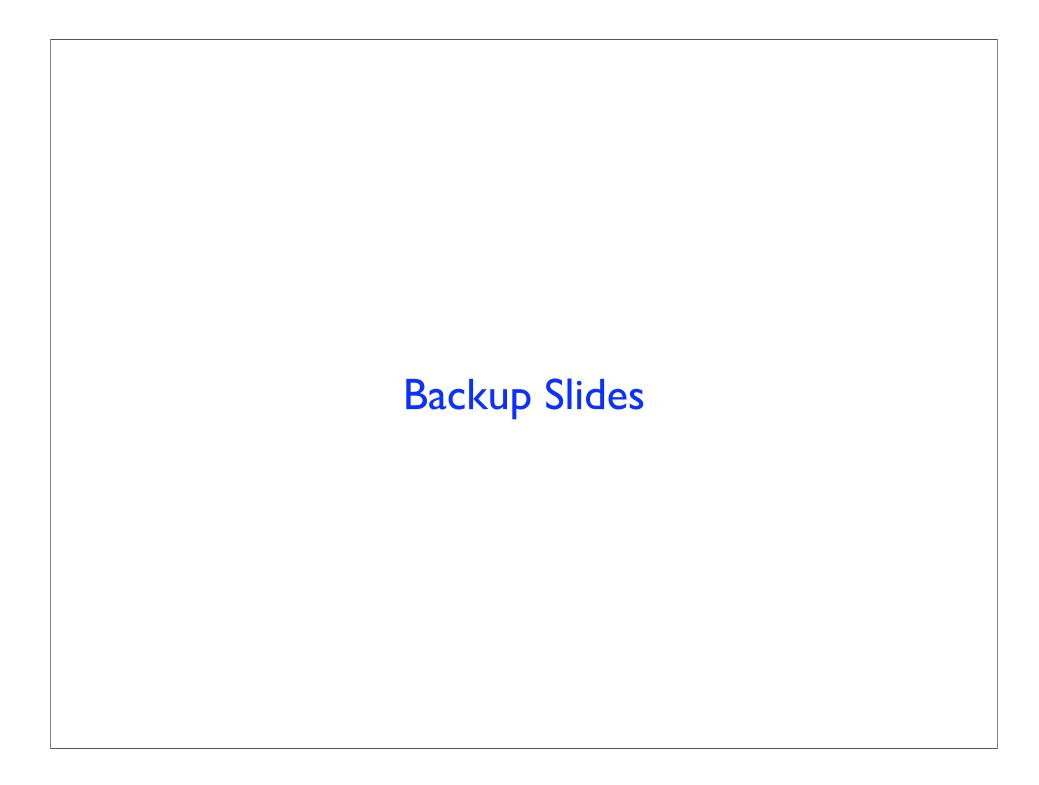
## Web Site

- <u>ilc.fnal.gov</u> undergoing redesign by Shekhar Mishra
  - Helped by Shilpee Arora and Liz Clements.
  - Top 4 levels are controlled by Shekhar
  - Targeted at a broad audience.
- Pages useful for us can be linked from level 4 pages.
- Path to our pages:
  - Level 2: "Detector R&D"
    - Level 3: "Physics and Simulation"
      - Level 4: "Simulated Analyses of Benchmark Processes"
      - Level 4: "Simulation and Reconstruction Software"
- Draft page (still in a very early stage):
  - ilc.fnal.gov/detector/rd/physics/technical/

## Rob's Work

- Work with Hans and rest of SiD to define the missing infrastructure:
  - If it takes too long, we will give up and roll our own.
  - We know what we want.
- Learn/Port several codes:
  - Kalman filter
  - Vertex fitting
  - Jet finding
  - Flavor tagging
- $B(H \rightarrow b bbar)$  and  $B(H \rightarrow c cbar)$ .
- Help with overall design of our website.

## Relevant Deadlines


- ALCPG October 22-26, 2007 at FNAL
  - First pass at one benchmark study for CDR.
- Spring 2008
  - Software for CDR benchmarks essentially complete.
  - CDR benchmark studies underway.
  - Start writing CDR.
- Fall 2008
  - Submit CDR.

#### Deadlines with Added Detail

- ALCPG October 22-26, 2007 at FNAL
  - Occupancy studies and most infrastructure done.
  - Kalman filter and other "ported" codes working
  - First release of detector built of wafers sometime in the summer.
  - First pass on one simulated analysis.
- Spring 2008
  - Our software working well enough for general use.
    - Continued improvements.
  - Several simulated analyses underway. TBD.
  - Start writing CDR.
- Fall 2008
  - Submit CDR.

## Summary

- We have agreed to a list of jobs:
  - Lots of forward tracking.
  - One simulated analysis.
  - Precursor infrastructure work that is implied by this.
  - FNAL web site.
  - Simulation of Pb Glass-scint dual readout calorimeter.
- We have a rough outline of who is doing what with specific deadlines for the October ALCPG meeting and less specific details for afterwards.



## org.lcsim

- Java based.
- Can be run standalone or within JAS3.
  - Documentation/examples are JAS3-centric.
- Framework runs the event loop and executes a list of "drivers" specfied by the user.
- Driver:
  - What other frameworks call a module.
  - Callable from the framework:
    - Detector change; process event; end of data ...
  - Can read event and add collections to the event.
  - Can overwrite/delete collections in an event.
- Native histogram/tuple environment: aida.
  - Display tools not as rich as root.

# org.lcsim (2)

- Reconstruction code lives in user areas and is not vetted by anyone.
- Little discipline among users to ensure that their codes cooperate.
  - Predefined classes are not rich enough for the job.
    - So everyone makes their own private extensions.
    - Can add these objects to the event but no persistency.
- No method to stop my histograms or collections from stomping on yours.
- Various "full" reconstruction codes are advertised:
  - Some ran in JAS2 and are not yet ported to JAS3.
  - Documentation by calling the author.
  - I have not yet run any of them.

# org.lcsim (3)

- Release model
  - Infrequent releases.
  - Users: copy current .jar files from SLAC
  - Developers: build the head
    - You just gotta know when the head is/was in good shape.
- Each user keeps current .jar files in ~/.JAS3
  - Deploying a new release clobbers the old one and you cannot backtrack unless you saved a copy ahead of time or know the check out time of the old version.
- Presumes that you always have internet access.
  - It does cache things but you may need to know in advance if you need to force caching.